Issue 7, 2019, Issue in Progress

Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems

Abstract

A novel, simple and efficient method by the combination of hydroxyl radicals and electrical exfoliation of graphite for the green production of high-quality graphene from graphite was first developed in our self-manufactured exfoliation apparatus. In this work, we focused on the investigation of the roles of various electrolyte systems for the exfoliation of graphite. Sodium chloride, sodium hydroxide, poly vinyl pyrrolidone (PVP), dodecyl trimethyl ammonium bromide (DTAB) and sodium dodecyl benzene sulfonate (SDBS) were tested as the electrolyte. The yields of the graphene product in sodium hydroxide, PVP, DTAB, sodium chloride and SDBS electrolyte system were 32.9%, 34.0%, 45.2%, 77.5% and 83.5%, respectively. The experimental result demonstrated that graphite can be successfully exfoliated to graphene in these electrolytes, with SDBS showing the best exfoliation effect. We further investigated the effects of process parameters on the graphite exfoliation in the SDBS system by single factor experiments. The obtained optimal process parameters were as follows: graphite dosage, 5.0 g; SDBS solution concentration, 10.0% (w/v); applied current strength, 10 mA; air flow, 1.0 L h−1; and exfoliation time, 3 h. At these conditions, the yield of the graphene product was 89.7%. TEM results revealed that the graphene product possessed the characteristic features of a thin-layer graphene sheet. XRD results showed that the graphene products still maintained the structures of carbon atoms or molecules. FT-IR and Raman results indicated that the products exhibited the characteristic peaks and the absorption peaks of graphene. AFM test results revealed that the layer number of graphene product obtained was about 2, while the layer numbers of the graphene products obtained from sodium hydroxide, PVP, DTAB and sodium chloride systems were 30, 20, 4 and 3, respectively, at the same experimental conditions. The observed exfoliation effect in the SDBS system was due to its good electrical conductivity, which was favorable for the formation of hydroxyl radicals in exfoliation. Furthermore, SDBS has good hydrophilic properties and can enable even dispersion of graphite in the system. These two effects facilitated the exfoliation of graphite to form good-quality graphene. SDBS as the electrolyte did not corrode the electrode, and it could be recycled; also, it does not pollute the environment and reduces the production cost, which is favorable for mass production.

Graphical abstract: Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems

Article information

Article type
Paper
Submitted
27 Nov 2018
Accepted
10 Jan 2019
First published
28 Jan 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 3693-3703

Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems

X. Wang and L. Zhang, RSC Adv., 2019, 9, 3693 DOI: 10.1039/C8RA09752F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements