Issue 14, 2019, Issue in Progress

Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3−x

Abstract

Sub-stoichiometric WO3−x has provided an alternative platform to investigate oxygen vacancies in gas sensors based on metal-oxides. We present an experimental study on the influence of sub-stoichiometric WO3−x phase upon gas sensing performance. High-quality WO3−x nanostructures with several x values (WO3, W19O55, W5O14, W18O49) were synthesized and used to fabricate H2S gas sensors. Temperature programmed desorption of oxygen (O2-TPD) shows that oxygen absorption behaviors of the as-prepared WO3−x nanostructures are affected by oxygen vacancies, which played a critical role in the detection of H2S at varying temperature range. We find that oxygen vacancies in sub-stoichiometric WO3−x facilitate the ionosorption process and in turn enhance the performance of the gas sensor.

Graphical abstract: Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3−x

Article information

Article type
Paper
Submitted
06 Jan 2019
Accepted
23 Feb 2019
First published
07 Mar 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 7723-7728

Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3−x

W. Yu, Z. Shen, F. Peng, Y. Lu, M. Ge, X. Fu, Y. Sun, X. Chen and N. Dai, RSC Adv., 2019, 9, 7723 DOI: 10.1039/C9RA00116F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements