Issue 16, 2019, Issue in Progress

Facile preparation of amidoxime-functionalized Fe3O4@SiO2-g-PAMAM-AO magnetic composites for enhanced adsorption of Pb(ii) and Ni(ii) from aqueous solution

Abstract

In this paper, using amidoxime as a functional monomer, different generations of polyamidoxime dendrimer magnetic microspheres (Fe3O4@SiO2-g-PAMAM-AO) were fabricated to adsorb Pb2+ and Ni2+ in aqueous solution. The magnetic adsorbents were characterized by FTIR, XRD, SEM, XPS, TEM, EDS, TGA and BET. The effects of different factors (such as solution pH, adsorption time, adsorption temperature, adsorbent dosage etc.) on adsorption were evaluated. Fe3O4@SiO2-g-PAMAM-AO has a maximum Pb(II) adsorption of 157.25 mg g−1 (100 mg L−1) at pH 5.5. Furthermore, Fe3O4@SiO2-g-PAMAM-AO showed an excellent adsorption performance for the removal of Ni(II) with a maximum adsorption capacity of 191.78 mg g−1 (100 mg L−1) at pH 8.0. The sorption isotherm data fitted the Freundlich isotherm model well. Adsorption kinetics analysis showed that it was best described by the pseudo-second-order rate model. Desorption experiment results showed that the adsorbent can be reused in the adsorption–desorption cycles.

Graphical abstract: Facile preparation of amidoxime-functionalized Fe3O4@SiO2-g-PAMAM-AO magnetic composites for enhanced adsorption of Pb(ii) and Ni(ii) from aqueous solution

Article information

Article type
Paper
Submitted
07 Jan 2019
Accepted
02 Mar 2019
First published
20 Mar 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 9171-9179

Facile preparation of amidoxime-functionalized Fe3O4@SiO2-g-PAMAM-AO magnetic composites for enhanced adsorption of Pb(II) and Ni(II) from aqueous solution

D. Yimin, L. Danyang, Z. Jiaqi, W. Shengyun and Z. Yi, RSC Adv., 2019, 9, 9171 DOI: 10.1039/C9RA00128J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements