Issue 13, 2019, Issue in Progress

An efficient synthesis of new imidazo[1,2-a]pyridine-6-carbohydrazide and pyrido[1,2-a]pyrimidine-7-carbohydrazide derivatives via a five-component cascade reaction

Abstract

A highly efficient and straightforward synthesis of N-fused heterocyclic compounds including N′-(1-(4-nitrophenyl)ethylidene)imidazo[1,2-a]pyridine-6-carbohydrazide and N′-(1-(4-nitrophenyl)ethylidene)pyrido[1,2-a]pyrimidine-7-carbohydrazide derivatives is successfully achieved via a five-component cascade reaction utilizing cyanoacetohydrazide, 4-nitroacetophenone, 1,1-bis(methylthio)-2-nitroethylene and various diamines in a mixture of water and ethanol. The new efficient domino protocol involving a sequence of N,N-acetal formation, Knoevenagel condensation, Michael reaction, imine–enamine tautomerization and N-cyclization as key steps. The merit of this catalyst free approach is highlighted by its easily available starting materials, operational simplicity, clean reaction profile, the use of environmentally benign solvents and tolerance of a wide variety of functional groups.

Graphical abstract: An efficient synthesis of new imidazo[1,2-a]pyridine-6-carbohydrazide and pyrido[1,2-a]pyrimidine-7-carbohydrazide derivatives via a five-component cascade reaction

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2019
Accepted
26 Feb 2019
First published
05 Mar 2019
This article is Open Access
Creative Commons BY license

RSC Adv., 2019,9, 7218-7227

An efficient synthesis of new imidazo[1,2-a]pyridine-6-carbohydrazide and pyrido[1,2-a]pyrimidine-7-carbohydrazide derivatives via a five-component cascade reaction

H. Hosseini and M. Bayat, RSC Adv., 2019, 9, 7218 DOI: 10.1039/C9RA00350A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements