Surfactant-dependant thermally induced nonlinear optical properties of l-ascorbic acid-stabilized colloidal GNPs and GNP–PVP thin films
Abstract
Gold nanoparticle (GNP) colloids stabilized with various concentrations of L-ascorbic acid were synthesized by the chemical reduction method and characterized by UV-Vis spectroscopy, XRD, FT-IR spectroscopy and TEM. XRD and TEM studies confirmed the reduction in particle size with the stabilizer concentration. UV-Vis spectra showed a blue shift in the LSPR peak. FT-IR peaks ascertained the strong encapsulation of GNPs with L-ascorbic acid functional groups. The nonlinear optical (NLO) properties of colloidal GNPs and GNP–PVP composite thin film were investigated using the Z-scan technique with CW laser excitation at 632.8 nm. The effects of stabilizer concentrations on nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third-order susceptibility (χ(3)) of colloidal GNPs and GNP–PVP composite thin films were investigated. The values of the NLO parameters for the thin films were as large as n2 = 10−5 cm2 W−1, β = 10−5 cm W−1 and χ(3)eff = 10−5 esu. For colloidal GNPs, these parameters were n2 = 10−6 cm2 W−1, β = 10−6 cm W−1 and χ(3)eff = 10−7 esu. In both these cases, the NLO parameter values were found to decrease as the stabilizer concentration increased from 1 to 5 mM. The considerable enhancement in the NLO parameters may be attributed to the thermal lensing effect originating from the thermo-optic phenomenon. From the results, the influence of the concentration of the stabilizer on the NLO properties is obvious.