Issue 32, 2019, Issue in Progress

Synthesis of π-conjugated network polymers based on triphenylamine (TPA) and tetraphenylethylene (TPE) as building blocks via direct Pd-catalyzed reactions and their application in CO2 capture and explosive detection

Abstract

In this study, we report the synthesis of π-conjugated network polymers via palladium-catalyzed direct arylation polycondensation of triphenylamine (TPA) and tetraphenylethylene (TPE) with different active substrates. Moreover, six conjugated porous polymers were obtained (named as TPA-TPA-MA, TPA-PB-MA, TPA-TFB-MA, TPA-TPE-MA, TPE-PB-MA, and TPE-TFB-MA). Then, the fluorescence properties in the solid and dispersed states, the corresponding microporous structures, and the Brunauer–Emmett–Teller (BET) surface areas of all polymers were well studied. Among the obtained materials, TPA-PB-MA possessed not only largest BET surface area (686 m2 g−1) and largest pore volume (0.716 cm3 g−1), but also the smallest pore size of 0.823 nm. These properties are very beneficial for the application of TPA-PB-MA in CO2 storage and PA sensing. At 1 bar, TPA-PB-MA demonstrated the significant CO2 uptake of 2.70 and 1.35 mmol g−1 at 273 and 298 K, respectively. Furthermore, TPA-PB-MA was most sensitive and selective towards PA recognition. The KSV constant was measured as 4.0 × 104 M−1.

Graphical abstract: Synthesis of π-conjugated network polymers based on triphenylamine (TPA) and tetraphenylethylene (TPE) as building blocks via direct Pd-catalyzed reactions and their application in CO2 capture and explosive detection

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2019
Accepted
26 May 2019
First published
10 Jun 2019
This article is Open Access
Creative Commons BY license

RSC Adv., 2019,9, 18098-18105

Synthesis of π-conjugated network polymers based on triphenylamine (TPA) and tetraphenylethylene (TPE) as building blocks via direct Pd-catalyzed reactions and their application in CO2 capture and explosive detection

L. Ma and H. Ma, RSC Adv., 2019, 9, 18098 DOI: 10.1039/C9RA02469G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements