Issue 28, 2019, Issue in Progress

Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils

Abstract

Sulfonated ordered mesoporous carbon (SO3H-OMC) solid acid catalysts from sucrose were prepared using hard-template method, and their catalytic performance as well as the deactivation mechanism for esterification of free fatty acids (FFAs) in waste cooking oils (WCOs) were evaluated. Effects of sulfonation time, sulfonation temperature and hard template structure type for the textural properties and acid properties of SO3H-OMC were systematically investigated by N2 adsorption–desorption, FT-IR, NH3-TPD, TEM and strong acid density analysis. The results indicated that, SO3H-OMC(s)-6-160 catalyst, which was prepared by using SBA-15 as hard template at sulfonation time of 6 h and sulfonation temperature of 160 °C, had well-ordered mesoporous structure and high –SO3H groups density (2.32 mmol g−1). Compared with SO3H-APC-6-160 catalyst, cation-exchange resin D072 and SO3H-OMC(k)-6-160 catalyst, it was found that the SO3H-OMC(s)-6-160 catalyst exhibited highest activity (FFAs conversion was 93.8%) and good stability for the FFAs esterification, attributed to its 2D-hexagonal channels and hydrophobic surface. The –SO3H groups being leached out of SO3H-OMC catalysts into the liquid phase (especially methanol) would be the main reason causing catalyst deactivation.

Graphical abstract: Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2019
Accepted
10 May 2019
First published
21 May 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 15941-15948

Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils

S. Na, Z. Minhua, D. Xiuqin and W. Lingtao, RSC Adv., 2019, 9, 15941 DOI: 10.1039/C9RA02546D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements