Issue 44, 2019, Issue in Progress

Chemical exfoliation efficacy of semiconducting WS2 and its use in an additively manufactured heterostructure graphene–WS2–graphene photodiode

Abstract

In the present work, various chemical exfoliation routes for semiconducting two-dimensional (2D) layered material WS2 are explored, which include magnetic stirring (MS), shear mixing (SM), and horn-tip (HT) sonication. Current–voltage measurements, Raman spectroscopy, and photoluminescence (PL) spectroscopy were used to characterize the drop-casted WS2 nanosheets produced by these three techniques and our analysis revealed that HT sonication produced the most optimal dispersions. Heterostructure photodetector devices were then fabricated using inkjet printing of the HT sonicated dispersions of WS2 and graphene. The photodetector device performance was measured using a stream of ON/OFF light pulses generated using a red laser with wavelength λ ∼ 660 nm, and an arbitrary waveform generator. From this analysis, the photoresponsivity and detectivity of the graphene–WS2–graphene heterostructure devices were calculated to be ∼0.86 A W−1 and ∼1013 Jones, respectively. Capacitance–voltage (CV) and C–frequency (f) measurements were also conducted, where the V was swept from –6 V to +6 V, while the change in C was measured from f ∼ 20 kHz up to 3 MHz to gain insights into the nature of the graphene–WS2 interface. From the CV measurements, the C plateaued at ∼324.3 pF from ∼−4 V to +4 V for the lowest f of 20 kHz and it reduced to ∼200 pF from −6 V to ∼−4 V, and similarly from ∼4 V to 6 V, C was ∼190 pF. The decrease in C for V > +4 V and V < −4 V was attributed to the reduction of the interfacial barrier at the electrodes which is suggestive of a Schottky-based photodiode at the graphene–WS2 interface. A sharp decrease in C from ∼315.75 pF at 25.76 kHz to ∼23.79 pF at 480 kHz (at 0 V bias) from the Cf measurements suggests a strong effect of interface trap density on C built-up at the graphene–WS2 interface and the ensuing Schottky barrier height. Our work confirms the excellent potential of solution-cast, trilayer graphene–WS2–graphene heterostructures as a promising photodetector platform using additively manufactured inkjet printing.

Graphical abstract: Chemical exfoliation efficacy of semiconducting WS2 and its use in an additively manufactured heterostructure graphene–WS2–graphene photodiode

Article information

Article type
Paper
Submitted
14 May 2019
Accepted
30 Jul 2019
First published
16 Aug 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 25805-25816

Chemical exfoliation efficacy of semiconducting WS2 and its use in an additively manufactured heterostructure graphene–WS2–graphene photodiode

J. A. Desai, N. Adhikari and A. B. Kaul, RSC Adv., 2019, 9, 25805 DOI: 10.1039/C9RA03644J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements