Issue 35, 2019, Issue in Progress

Controllable fluorescence via tuning the m-substituents of added aromatic molecules in a pyrene derivative-decorated porous skeleton

Abstract

A novel pyrene derivative based composite fluorescent material was developed by immobilizing the pyrene-1-carboxylic acid (PyCOOH) into the pores of porous polyurea microspheres (denoted as PyCOOH-decorated PPUM). Encouragingly, the fluorescence spectrum of this synthesized composite microsphere only exhibited monomer emission of guest PyCOOH, indicating that the porous skeleton PPUM has excellent isolation ability to separate the guest molecules from each other. This discovery will provide an effective strategy to design and synthesize pyrene based host–guest systems without excimer emission. Notably, the PyCOOH-decorated PPUM can keep good fluorescent stability when dispersed in many organic solvents. More excitingly, it was found for the first time that the fluorescence of such a material can be regulated by adding aromatic compounds containing different m-substituted groups. When m-cresol was added, the intensity of the monomer emission enhanced significantly due to the unusual dissolution of the host porous polyurea sphere. By adding the m-toluidine, the monomer emission without the fluorescence of unassociated PyCOOH increased owing to the connection of m-toluidine and PyCOOH which escaped from the pores. In the presence of m-methylacetophenone and m-toluic acid, the monomer emission showing different degrees of decline was observed respectively because of the different substitution process. This result will contribute to the exploration of more promising candidates for pyrene-based fluorescent sensors.

Graphical abstract: Controllable fluorescence via tuning the m-substituents of added aromatic molecules in a pyrene derivative-decorated porous skeleton

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2019
Accepted
24 Jun 2019
First published
28 Jun 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 20185-20191

Controllable fluorescence via tuning the m-substituents of added aromatic molecules in a pyrene derivative-decorated porous skeleton

J. Wu, S. Huang, X. Wang and M. Bai, RSC Adv., 2019, 9, 20185 DOI: 10.1039/C9RA03837J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements