Issue 44, 2019, Issue in Progress

Modification of a polyethersulfone membrane with a block copolymer brush of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) and a branched polypeptide chain of Arg–Glu–Asp–Val

Abstract

Polyethersulfone (PES) has good thermal stability, superior pH, chlorine tolerance, and excellent chemical resistance; however, the hydrophilicity and biocompatibility of PES need to be improved for its real applications. In this study, we report a surface modification method for the preparation of a functional PES membrane with hydrophilic polymer chains (MPC and GMA) via surface-initiated electrochemically-mediated atom-transfer radical polymerization (SI-eATRP) technology, and the Arg–Glu–Asp–Val polypeptide groups (REDV) were immobilized onto the modified membrane by a ring-opening reaction. XPS and SEM were used to analyze the chemical composition and morphology of the modified membrane surfaces, confirming that the hydrophilic polymer chains MPC and GMA and the polypeptide group REDV were successfully grafted onto the PES membrane surface. The static water contact angle decreased from 89° to 50–65°, and the hydrophilic property of the modified membrane was enhanced. The water flux increased from 4.29 L m−2 h−1 for the pristine PES membrane to 25 L m−2 h−1 for the modified membrane with PGMA chains grafted on it and REDV functional groups immobilized on it; note that the antifouling tests showed that all the modified membranes had the higher flux recovery ratio values (FRR) of above 80% than the pristine PES membrane (about 60%), and the APTT for the modified membrane increased from 46 s to 93 s, indicating that these modified membranes could be applied in the separation and blood purification fields.

Graphical abstract: Modification of a polyethersulfone membrane with a block copolymer brush of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) and a branched polypeptide chain of Arg–Glu–Asp–Val

Article information

Article type
Paper
Submitted
05 Jun 2019
Accepted
21 Jul 2019
First published
13 Aug 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 25274-25284

Modification of a polyethersulfone membrane with a block copolymer brush of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) and a branched polypeptide chain of Arg–Glu–Asp–Val

X. Niu, D. Li, Y. Chen and F. Ran, RSC Adv., 2019, 9, 25274 DOI: 10.1039/C9RA04234B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements