Issue 40, 2019, Issue in Progress

Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base

Abstract

A series of novel myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Their structures were systematically characterized using 1H NMR, 13C NMR, and HRMS. During antibacterial bioassays, 6f, 6i, and 6q demonstrated a good inhibitory effect against Xanthomonas axonopodis pv. citri (Xac), with half-maximal effective concentration (EC50) values of 10.0, 9.4, and 8.8 μg mL−1, respectively, which were better than those of bismerthiazol (54.9 μg mL−1) and thiodiazole copper (61.1 μg mL−1). Note that 6w demonstrated a good inhibitory effect against Ralstonia solanacearum (Rs) with and EC50 value of 15.5 μg mL−1, which was better than those of bismerthiazol (55.2 μg mL−1) and thiodiazole copper (127.9 μg mL−1). Similarly, 6a, 6d, and 6e demonstrated a good inhibitory effect against Xanthomonas oryzae pv. oryzae (Xoo) with EC50 values of 47.1, 61.2, and 61.0 μg mL−1, respectively, which were better than those of bismerthiazol (148.2 μg mL−1) and thiodiazole copper (175.5 μg mL−1). Furthermore, we used scanning electron microscopy (SEM) to study the possible sterilization process of the target compound 6q against Xac. The results indicated the possibility of destroying the bacterial cell membrane structure, resulting in an incomplete bacterial structure, and thus achieving inhibition. Furthermore, antiviral bioassays revealed that most compounds exhibited excellent antiviral activity against tobacco mosaic virus (TMV) at a concentration of 500 μg mL−1. The results of the molecular docking studies for 6g with TMV-CP (PDB code: 1EI7) showed that compound 6g had partially interacted with TMV-CP. Therefore, mechanistic studies of the action of compound 6g could be further studied based on that.

Graphical abstract: Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2019
Accepted
22 Jul 2019
First published
25 Jul 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 23045-23052

Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base

Y. Chen, P. Li, S. Su, M. Chen, J. He, L. Liu, M. He, H. Wang and W. Xue, RSC Adv., 2019, 9, 23045 DOI: 10.1039/C9RA05139B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements