Issue 49, 2019, Issue in Progress

Study on noise-vibration coupling characteristics of premixed methane–air flame propagation in a tube with an acoustic absorption material

Abstract

To study the influence of an acoustic absorbing material (AAM) on the noise and vibration of a methane–air deflagration flame in a square plexiglass tube, a high-speed video camera, pressure sensors, and a noise and vibration tester were used to test the deflagration flame propagation velocity, deflagration pressure, noise and wall vibration characteristics in the tube. The tube length is 540 mm with a cross section of 80 × 80 mm2, and its wall thickness is 12 mm. The experimental results indicate that under the conditions of 8.96% CH4 by volume and fixed repeating obstacles, the built-in AAM of polyester fiber cotton can reduce the peak velocity of the deflagration flame propagation by 11.3%. In addition, the average maximum sound pressure level of the deflagration flame noise is decreased by 17.6%, and the peak vertical vibration velocity of the tube outer wall is decreased by 85.6%. Therefore, using AAM can effectively attenuate the flame propagation and its harmful effects. For the case with an AAM, the flame propagation velocity and deflagration pressure reached the maximum values at 33 ms after ignition, and the values were 62.50 m s−1 and 27.74 kPa, respectively. Similarly, the time history curves of the noise and the tube wall vibration caused by deflagration presented certain correlations. The experimental results and analysis in this paper provide reference values for controlling the hazards of gas explosions in underground mines and other combustible gases in industrial pipelines.

Graphical abstract: Study on noise-vibration coupling characteristics of premixed methane–air flame propagation in a tube with an acoustic absorption material

Article information

Article type
Paper
Submitted
14 Jul 2019
Accepted
29 Aug 2019
First published
10 Sep 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 28323-28329

Study on noise-vibration coupling characteristics of premixed methane–air flame propagation in a tube with an acoustic absorption material

Q. Wang, W. Chang, S. Liu, Z. Li and K. Zhu, RSC Adv., 2019, 9, 28323 DOI: 10.1039/C9RA05387E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements