Issue 56, 2019

Density functional study of Li/Na adsorption properties of single-layer and double-layer antimonenes

Abstract

β-Antimonene, a stable two-dimensional material, has been successfully prepared recently. Experiments have demonstrated β-antimonene's excellent Li storage properties. Based on first-principles density functional theory (DFT), the adsorption properties of Li/Na atoms on single-layer antimonene (SL-Sb) and double-layer antimonene (DL-Sb) have been studied. The optimal adsorption position of Li/Na atoms on SL-Sb is the V site with an adsorption energy of 1.91/1.46 eV. With the increase of Li adsorption density, the crystal structure of the antimonene changes significantly. The optimal adsorption position of Li on DL-Sb is the V2 site in the interlayer with an adsorption energy of 2.71 eV, and that of Na is the V1 site outside the surface with an adsorption energy of 1.72 eV. With the increase of the adsorption density of Li, the antimonene presented a trend of forming an alloy. Whereas with the increase of Na adsorption density, the antimonene retains its original structure. The diffusion barrier of Li/Na atoms on the SL-Sb surface is 0.22/0.13 eV, and outside the DL-Sb surface is 0.25/0.15 eV. In short, DL-Sb can maintain a stable structure with a large Li/Na storage density; the diffusion barriers of Li/Na atoms on antimonene are relatively low, which is beneficial to the rapid insertion/extraction.

Graphical abstract: Density functional study of Li/Na adsorption properties of single-layer and double-layer antimonenes

Article information

Article type
Paper
Submitted
04 Aug 2019
Accepted
19 Sep 2019
First published
11 Oct 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 32608-32619

Density functional study of Li/Na adsorption properties of single-layer and double-layer antimonenes

H. Wei, J. Sun, Y. Hu, Z. Li and M. Ai, RSC Adv., 2019, 9, 32608 DOI: 10.1039/C9RA06059F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements