Issue 61, 2019

Two-dimensional polar metals in KNbO3/BaTiO3 superlattices: first-principle calculations

Abstract

Polar metals, commonly defined by the coexistence of polar structure and metallicity, are thought to be scarce because free carriers eliminate internal dipoles that may arise owing to asymmetric charge distributions. By using first-principle electronic structure calculations, we explored the possibility of producing metallic states in the polar/nonpolar KNbO3/BaTiO3 superlattice (SL) composed of two prototypical ferroelectric materials: BaTiO3 (BTO) and KNbO3 (KNO). Two types of polar/nonpolar interfaces, p-type (KO)/(TiO2)0 and n-type (NbO2)+/(BaO)0, which can be constituted into two symmetric NbO2/BaO–NbO2/BaO (NN-type) and KO/TiO2–KO/TiO2 (PP-type) SL, as well as one asymmetric KO/TiO2–NbO2/BaO (PN-type) SL. The spatial distribution of ferroelectric distortions and their conductive properties are found to be extraordinarily sensitive to the interfacial configurations. An insulator-to-metal transition is found in each unit cell of the symmetric interfacial SL models: one exhibiting quasi-two-dimensional n-type conductivity for NN-type SL, while the other being quasi-two-dimensional p-type conductivity for PP-type SL. The anisotropic coexistence of in-plane orientation of free carriers and out-of-plane orientation of ferroelectric polarization in KNO/BTO SL indicates that in-plane free carriers can not eliminate the out-of-plane dipoles. Our results provide a road map to create two-dimensional polar metals in insulating perovskite oxide SL, which is expected to promote applications of new quantum devices.

Graphical abstract: Two-dimensional polar metals in KNbO3/BaTiO3 superlattices: first-principle calculations

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2019
Accepted
25 Oct 2019
First published
01 Nov 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 35499-35508

Two-dimensional polar metals in KNbO3/BaTiO3 superlattices: first-principle calculations

G. Li, H. Huang, S. Peng, Y. Xiong, Y. Xiao, S. Yan, Y. Cao, M. Tang and Z. Li, RSC Adv., 2019, 9, 35499 DOI: 10.1039/C9RA06209B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements