Issue 61, 2019

Strain-tunable magnetic anisotropy in two-dimensional Dirac half-metals: nickel trihalides

Abstract

The recent discovery of intrinsic two-dimensional (2D) ferromagnetism has sparked intense interest due to the potential applications in spintronics. Magnetic anisotropy energy defines the stability of magnetization in a specific direction with respect to the crystal lattice and is an important parameter for nanoscale applications. In this work, using first-principles calculations we predict that 2D NiX3 (X = Cl, Br, and I) can be a family of intrinsic Dirac half-metals characterized by a band structure with an insulator gap in one spin channel and a Dirac cone in the other. The combination of 100% spin polarization and massless Dirac fermions renders the monolayer NiX3 a superior candidate material for efficient spin injection and high spin mobility. The NiX3 is dynamically and thermodynamically stable up to high temperature and the magnetic moment of about 1 μB per Ni3+ ion is observed with high Curie temperature and large magnetic anisotropy energy. Moreover, detailed calculations of their energetics, atomic structures, and electronic structures under the influence of a biaxial strain ε have been carried out. The magnetic anisotropy energy also exhibits a strain dependence in monolayer NiX3. The hybridization between Ni dxy and dx2-y2 orbitals gives the largest magnetic anisotropy contribution, whether for the off-plane magnetized NiCl3 (NiBr3) or the in-plane magnetized NiI3. The outstanding attributes of monolayer NiX3 will substantially broaden the applicability of 2D magnetism for a wide range of applications.

Graphical abstract: Strain-tunable magnetic anisotropy in two-dimensional Dirac half-metals: nickel trihalides

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2019
Accepted
23 Oct 2019
First published
04 Nov 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 35614-35623

Strain-tunable magnetic anisotropy in two-dimensional Dirac half-metals: nickel trihalides

Z. Li, B. Zhou and C. Luan, RSC Adv., 2019, 9, 35614 DOI: 10.1039/C9RA06474E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements