Issue 51, 2019, Issue in Progress

Tuning the orientation of few-layer MoS2 films using one-zone sulfurization

Abstract

Few-layer MoS2 films are promising candidates for applications in numerous areas, such as photovoltaics, photocatalysis, nanotribology, lithium batteries, hydro-desulfurization catalysis and dry lubricants, especially due to their distinctive electronic, optical, and catalytic properties. In general, two alignments of MoS2 layers are possible – the horizontal and the vertical one, having different physicochemical properties. Layers of both orientations are conventionally fabricated by a sulfurization of pre-deposited Mo films. So far, the Mo thickness was considered as a critical parameter influencing the final orientation of MoS2 layers with horizontally and vertically aligned MoS2 grown from thin (1 nm) and thick (3 nm) Mo films, respectively. Here, we present a fabrication protocol enabling the growth of horizontally or vertically aligned few-layer MoS2 films utilizing the same Mo thickness of 3 nm. We show that the sulfur vapor is another parameter influencing the growth mechanism, where a sulfurization with higher sulfur vapor pressure leads to vertical MoS2 layers and slow sulfur evaporation results in horizontally aligned layers for a thicker Mo starting layer.

Graphical abstract: Tuning the orientation of few-layer MoS2 films using one-zone sulfurization

Article information

Article type
Paper
Submitted
27 Aug 2019
Accepted
13 Sep 2019
First published
19 Sep 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 29645-29651

Tuning the orientation of few-layer MoS2 films using one-zone sulfurization

M. Sojková, K. Vegso, N. Mrkyvkova, J. Hagara, P. Hutár, A. Rosová, M. Čaplovičová, U. Ludacka, V. Skákalová, E. Majková, P. Siffalovic and M. Hulman, RSC Adv., 2019, 9, 29645 DOI: 10.1039/C9RA06770A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements