Issue 62, 2019

Birnessite-coated sand filled vertical flow constructed wetlands improved nutrients removal in a cold climate

Abstract

At low temperature, plants wither and microbial activities decrease, leading to a decline in the pollutant-treatment performance of constructed wetlands (CWs). In this study, vertical flow CWs (VFCWs) with birnessite (Mn oxides)-coated sand (Mn-CWs) were developed to investigate the pollutant removal performance and mechanism in a cold climate. The results showed that the average removal efficiencies for NH4–N, NO3–N, TN, and TP were 73.81%, 90.66%, 82.44%, and 57.89% in Mn-CWs, respectively, while the average removal efficiencies for NH4–N, NO3–N, TN, and TP were 29.07%, 90.40%, 62.80%, and 26.32% in the control, respectively. Mn-CWs enhanced microbial denitrification and matrix storage, as well as inhibited P release in Mn-CWs at low temperature. According to GC-MS analysis of the organic compounds, the Mn-CWs matrix contained much more short-chain volatile organic compounds, such as carboxylic acid derivatives, while the control matrix had more ethyl acetate. The absolute quantities of bacterial 16S rRNA, amoA, narG, nirS, and nosZ were significantly higher than the control at 20 cm height from the bottom (p > 0.05). Illumina high-throughput sequencing analysis revealed that the relative abundances of nitrifying and denitrifying bacteria were both higher in Mn-CWs than that of the control. CWs filled with birnessite-coated sand represent an innovative approach for improving nutrient removal performance in cold climates through chemical absorption and microbial transformation.

Graphical abstract: Birnessite-coated sand filled vertical flow constructed wetlands improved nutrients removal in a cold climate

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2019
Accepted
21 Oct 2019
First published
04 Nov 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 35931-35938

Birnessite-coated sand filled vertical flow constructed wetlands improved nutrients removal in a cold climate

N. Zhang, Y. Yang, L. Huang, H. Xie and Z. Hu, RSC Adv., 2019, 9, 35931 DOI: 10.1039/C9RA07364G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements