Issue 71, 2019, Issue in Progress

Hybrid analytical-numerical approach for investigation of differential effects in normal and cancer cells under electroporation

Abstract

Electroporation has offered important biomedical applications in electrochemotherapy, tissue ablation and gene editing recently. Time and computation efficient analytical and numerical models should be developed to understand the differential effects of electroporation on normal and cancer cells. In this work, we present a hybrid analytical–numerical approach to investigate the behavior of normal and cancer cells under electroporation. We have compared the human breast cancer cell (MCF-7) and non-tumorigenic human breast cell (MCF-10A) under electroporation in terms of change in transmembrane voltage and pore formation on cell surface. The effects of electric pulse time, amplitude and membrane conductivity variation are analyzed in a systematic manner. To accelerate the calculation of transmembrane voltage, we have introduced a simple Multilayer Electric Potential Model (MEPM) which calculates the potential distribution across the cell analytically. The MEPM calculates electric potential distribution across a biological cell sandwiched between two semi-circular electrodes held at fixed potential, by solving the Laplace's equation over an equivalent planar, multilayer geometry. The MEPM model is then used in a Finite Element Method (FEM) based numerical model of electroporation. Transmembrane voltage and pore density for electroporated MCF-10A are estimated to be 1.31 V and 2.98 × 1013 m−2 respectively, and for MCF-7 the estimated values are 0.53 V and 1.93 × 1014 m−2, respectively. Our results suggest that under electroporation, the cancer cell's membrane get much more permeabilized than its counterpart normal cell even at small values of transmembrane voltage. This work provides a theoretical basis for further experimental exploration of electroporation process in cancer therapy, and serves as a design tool for performance optimization.

Graphical abstract: Hybrid analytical-numerical approach for investigation of differential effects in normal and cancer cells under electroporation

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2019
Accepted
05 Dec 2019
First published
16 Dec 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 41518-41530

Hybrid analytical-numerical approach for investigation of differential effects in normal and cancer cells under electroporation

M. A. Aslam, K. Riaz, M. Q. Mahmood and M. Zubair, RSC Adv., 2019, 9, 41518 DOI: 10.1039/C9RA07428G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements