Issue 68, 2019

Graphene platelet reinforced copper composites for improved tribological and thermal properties

Abstract

In this work, investigations were conducted to evaluate a type of graphene platelet–reinforced copper (GPL/Cu) composite for enhanced tribological and thermal properties. The pin-on-disc (steel) results show that the wear loss and the friction coefficient of the composites decrease by nearly 80% and 70%, respectively, in comparison with those of pure Cu. Thermal conductivity of the composites initially improves substantially by approximately 30% with a slight loading of 0.25 vol% GPLs and decreases gradually with a higher content of GPLs. Microstructural analysis reveals that the enhancement in the tribological property is attributed to both the self-lubricating property of GPLs and grain refinement while the improvement in the thermal property is closely associated with the uniform dispersion of GPLs.

Graphical abstract: Graphene platelet reinforced copper composites for improved tribological and thermal properties

Article information

Article type
Paper
Submitted
01 Oct 2019
Accepted
25 Nov 2019
First published
02 Dec 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 39883-39892

Graphene platelet reinforced copper composites for improved tribological and thermal properties

M. Wu, Z. Chen, C. Huang, K. Huang, K. Jiang and J. Liu, RSC Adv., 2019, 9, 39883 DOI: 10.1039/C9RA07962A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements