Synthesis of a novel hexaazatriphenylene derivative for the selective detection of copper ions in aqueous solution†
Abstract
A hexaazatriphenylene (HAT) derivative, naphtho[2,3-h]naphtho[2′,3':7,8]quinoxalino[2,3-a]naphtho[2′,3′:7,8]quinoxalino[2,3-c]phenazine-5,10,15,20,25,30-hexaone (NQH) was synthesized, characterized, and found to have novel properties in being selective toward the detection of copper (Cu2+) ions. The capability of NQH to be employed as a colorimetric, chemo-fluorescence and electrochemical sensor for the detection of Cu2+ was demonstrated by performing UV-Vis absorbance, fluorescence intensity, and cyclic voltammetry (CV) measurements. The interaction between NQH and Cu2+ was initially observed with an obvious color change from yellow to brown upon the addition of Cu2+ ions to NQH. The interaction was also confirmed by UV-Vis absorbance, fluorescence intensity, and mass spectroscopy (MS/MS) measurements. UV absorbance, fluorescence and CV of NQH toward Cu2+ showed good linearity with a detection limit of 3.32 μM, 2.20 μM and 0.78 μM, respectively, which are lower than the toxicity levels of copper in drinking water (20–30 μM) set by the U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO). A 1 : 2 stoichiometry complexation between NQH and Cu2+ was confirmed by Job's plot and MS/MS. In addition, the selectivity and sensitivity of the NQH compound towards Cu2+ ions were further confirmed by performing CV on a screen printed flexible and planar electrochemical sensor.