Theoretical investigation on the promotion of second harmonic generation from chalcopyrite family AIGaS2 to AIIGa2S4†
Abstract
The chalcopyrite structure is a rich source for the exploration of new IR materials. However, not all of the compounds with a chalcopyrite-type structure exhibit satisfactory optical properties, which may originate from their different microstructure features. In this work, we selected four classical chalcopyrite materials, AIGaS2 (AI = Ag, Cu) with normal structures and AIIGa2S4 (AII = Zn, Hg) with defect structures, to study their electronic structures, optical properties including the contribution of ions and ion groups to their band gaps, SHG responses and birefringences by the first-principles method. The results uncover that the different band gaps are mainly caused by the d orbitals of A* (A* = AI, AII)-site atoms and dp hybridizations between the A*-site and S atoms. In addition, the more powerful covalent bonds of AII–S and Ga–S in the AIIGa2S4 lead to the larger SHG responses of ZnGa2S4 and HgGa2S4. For the birefringences, the sizes of the A*-site atoms make sense, namely larger size will lead to higher distortion of tetrahedra, then result in large birefringences. All the above analyses conclude that the A*-site atoms in the chalcopyrite structures play a modulation role in determining the optical properties.