Issue 71, 2019, Issue in Progress

Asymmetric Diels–Alder reaction of 3-(acyloxy)acryloyl oxazolidinones: optically active synthesis of a high-affinity ligand for potent HIV-1 protease inhibitors

Abstract

We describe here our investigation of the asymmetric Diels–Alder reaction of chiral 3-(acyloxy)acryloyl oxazolidinones as dienophiles in various Lewis-acid promoted reactions with cyclopentadiene. The resulting highly functionalized cycloadducts are useful intermediates for the synthesis, particularly for the optically active synthesis of 6-5-5 tricyclic hexahydro-4H-3,5-methanofuro[2,3-b]pyranol (3) with five contiguous chiral centers. This stereochemically defined crown-like heterocyclic derivative is an important high affinity ligand for a variety of highly potent HIV-1 protease inhibitors. Among the various dienophiles and Lewis acid-mediated reactions surveyed, 3-(4-methoxybenzoyl)acryloyl oxazolidinone as the dienophile and diethylaluminum chloride as the Lewis-acid provided the desired endo product with excellent diastereoselectivity. The cycloaddition was carried out in multi-gram scale and the cycloadduct was efficiently converted to alcohol 3 with high enantiomeric purity. The optically active ligand was then transformed into potent HIV-1 protease inhibitor 2.

Graphical abstract: Asymmetric Diels–Alder reaction of 3-(acyloxy)acryloyl oxazolidinones: optically active synthesis of a high-affinity ligand for potent HIV-1 protease inhibitors

Supplementary files

Article information

Article type
Paper
Submitted
13 Nov 2019
Accepted
06 Dec 2019
First published
17 Dec 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 41755-41763

Asymmetric Diels–Alder reaction of 3-(acyloxy)acryloyl oxazolidinones: optically active synthesis of a high-affinity ligand for potent HIV-1 protease inhibitors

A. K. Ghosh, A. Grillo, S. Kovela and M. Brindisi, RSC Adv., 2019, 9, 41755 DOI: 10.1039/C9RA10178K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements