Issue 12, 2019

Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable nickel–bismuth batteries

Abstract

The exploration of a stable and high-rate anode is of pivotal importance for achieving advanced aqueous rechargeable batteries. Owing to the beneficial properties of high conductivity, suitable negative working voltage, and three-electron redox, bismuth (Bi) is considered as a promising anode material, but it suffers from poor stability. Here, we successfully endow Bi nanoflakes (NFs) with prominent cycling performance by a one-step surface oxidation approach to remarkably boost its reversibility. As a result, the partially oxidized Bi NFs (BiOx) show an admirable capacity (0.38 mA h cm−2 at 2 mA cm−2), good rate capability and superior long-term stability (almost no capacity decay after 20 000 cycles). Furthermore, a durable aqueous Ni//Bi battery is constructed based on the optimized BiOx anode, which exhibits excellent durability with 96% capacity retention after 5000 cycles. This study could open a new avenue for the rational design of efficient anodes for eco-friendly and reliable aqueous rechargeable batteries.

Graphical abstract: Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable nickel–bismuth batteries

Supplementary files

Article information

Article type
Edge Article
Submitted
07 Nov 2018
Accepted
11 Feb 2019
First published
11 Feb 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 3602-3607

Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable nickel–bismuth batteries

Y. Zeng, M. Wang, W. He, P. Fang, M. Wu, Y. Tong, M. Chen and X. Lu, Chem. Sci., 2019, 10, 3602 DOI: 10.1039/C8SC04967J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements