Issue 7, 2019

Boosting the ORR performance of modified carbon black via C–O bonds

Abstract

In the research into oxygen reduction reaction (ORR) catalysts that are applicable to proton exchange membrane fuel cells (PEMFCs), many efforts have been made over a long time period to increase the catalytic activity and reduce the cost. Conductive carbon black is a type of load material widely used in industry. We have developed a cheap carbonization method using Co2+, Zn2+ and 2-methylimidazole (2-MI) on the surface of carbon black. The modified carbon black (MCB) catalyst with high ORR activity has a large diffusion-limited current density (MCB-3 6.18 mA cm−2), a half-wave potential (MCB-3 0.858 V), and no obvious decay after 20 000 cyclic voltammetry cycles. The characterization and controlled experiment results show that the metal content in the MCB is very low, even though it cannot be detected using extended X-ray absorption fine structure spectroscopy (EXAFS), and its ORR activity may be related to the formation of C–O bonds on the surface during the modification process. Subsequent density functional theory calculation results also support this idea. Through the simple modification of carbon black, a catalyst with excellent performance and low price can be obtained. At the same time, the study of the active site of the C–O bond will also provide new ideas for the study of ORR catalysts.

Graphical abstract: Boosting the ORR performance of modified carbon black via C–O bonds

Supplementary files

Article information

Article type
Edge Article
Submitted
24 Nov 2018
Accepted
07 Dec 2018
First published
07 Dec 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 2118-2123

Boosting the ORR performance of modified carbon black via C–O bonds

C. Ouyang, B. Ni, Z. Sun, J. Zhuang, H. Xiao and X. Wang, Chem. Sci., 2019, 10, 2118 DOI: 10.1039/C8SC05236K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements