Construction of a cross-layer linked G-octamer via conformational control: a stable G-quadruplex in H-bond competitive solvents†
Abstract
Methanol soluble and stable guanosine octamers were successfully achieved via H-bond self-assembly. Through structural conformational design, we developed a new class of guanosine derivatives with modification on guanine (8-aryl) and ribose (2′,3′-isopropylidene). This unique design led to the formation of the first discrete G8-octamer with its structure characterized by single crystal X-ray diffraction, MS and NMR spectroscopy. The G8-octamer showed unique cation recognition properties, including the formation of a stable Rb+ templated G-quadruplex. Based on this observation, further modification on the 8-aryl moiety was performed to incorporate a cross-layer H-bond or covalent linkage. Similar G-octamers were obtained in both cases with structures confirmed by single crystal X-ray diffraction. Furthermore, the covalently linked G-quadruplex exhibited excellent stability even in MeOH and DMSO, suggesting a promising future for this new H-bond self-assembly system in biological and material applications.
- This article is part of the themed collection: 2019 Chemical Science HOT Article Collection