Issue 18, 2019

A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS

Abstract

Electrospray ionization (ESI) combined with ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques is used to examine the Biginelli reaction in an ensemble of ions generated from droplets. We find evidence for rapid dihydropyrimidinone formation from condensation of ethyl acetoacetate, benzaldehyde, and urea on the very short timescales associated with the electrospray process (∼10 μs to ∼1.0 ms). Control bulk-solution reactions show no product formation even after several days. This implies that the in-droplet reaction rate is enhanced by an astonishing factor. Examination of the reaction conditions and characterization of the intermediates en route to product shows evidence for variations in the reaction mechanism. IMS separation shows that the Knoevenagel condensation intermediate from benzaldehyde and ethyl acetoacetate exists as both the cis- and trans-isomer, in a ∼5 to 1 ratio. We suggest that the dramatic acceleration arises because of increased reagent confinement as electrosprayed droplets shrink. The ability of IMS-MS to resolve intermediates (including isomers) provides a new means of understanding reaction pathways.

Graphical abstract: A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS

Supplementary files

Article information

Article type
Edge Article
Submitted
09 Feb 2019
Accepted
28 Mar 2019
First published
28 Mar 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 4822-4827

A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS

N. Sahota, D. I. AbuSalim, Melinda L. Wang, C. J. Brown, Z. Zhang, T. J. El-Baba, S. P. Cook and D. E. Clemmer, Chem. Sci., 2019, 10, 4822 DOI: 10.1039/C9SC00704K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements