Issue 23, 2019

Stable radical versus reversible σ-bond formation of (porphyrinyl)dicyanomethyl radicals

Abstract

(Porphyrinyl)dicyanomethyl radicals were produced by oxidation of dicyanomethyl-substituted porphyrins with PbO2. These radicals constitute a rare example displaying stable radical versus dynamic covalent chemistry (DCC) depending upon the substitution position of the dicyanomethyl radical. meso-Dicyanomethyl-substituted radicals exist as stable monomeric species and do not undergo any dimerization processes either in the solid state or in solution. In contrast, β-dicyanomethyl-substituted radicals are isolated as σ-dimers that are stable in the solid-state but display reversible σ-dimerization behavior in solution; monomeric radical species exist predominantly at high temperatures, while σ-dimerization is favoured at low temperatures. This dynamic behaviour has been confirmed by variable-temperature 1H NMR, UV-vis and EPR measurements. The structures of the stable radical and σ-dimer have been revealed by single-crystal X-ray diffraction analysis. The observed different reactivities of the two (porphyrinyl)dicyanomethyl radicals have been rationalized in terms of their spin delocalization behaviours.

Graphical abstract: Stable radical versus reversible σ-bond formation of (porphyrinyl)dicyanomethyl radicals

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Apr 2019
Accepted
13 May 2019
First published
13 May 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 6007-6012

Stable radical versus reversible σ-bond formation of (porphyrinyl)dicyanomethyl radicals

B. Adinarayana, D. Shimizu, K. Furukawa and A. Osuka, Chem. Sci., 2019, 10, 6007 DOI: 10.1039/C9SC01631G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements