Issue 3, 2019

N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries

Abstract

Minimizing life-cycle environmental impacts of rechargeable batteries has been attracting tremendous interest recently. Of a number of key components for lithium-ion and sodium-ion batteries, hard carbon represents a promising material for battery anodes due to its advantages such as high and fast rate capability, no intercalation-induced exfoliation, and ease of forming molecularly doped anodes. While there are several methods to synthesize hard carbon, here we demonstrate that waste polyimide separators could serve as an ideal precursor to synthesize hard carbon with in situ nitrogen doping. By inheriting the unique net-like structure of the polyimide fiber separator, the resultant material exhibits a three-dimensional macro-porous structure consisting of an interconnected network of nitrogen-doped carbon fibres. The porous architecture of the material achieved at a carbonization temperature of 900 °C yields a high capacity anode with a long cycling life for rechargeable Li-ion and Na-ion batteries.

Graphical abstract: N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2018
Accepted
23 Dec 2018
First published
07 Jan 2019

Sustainable Energy Fuels, 2019,3, 717-722

N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries

Y. Wang, Y. Li, S. S. Mao, D. Ye, W. Liu, R. Guo, Z. Feng, J. Kong and J. Xie, Sustainable Energy Fuels, 2019, 3, 717 DOI: 10.1039/C8SE00590G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements