Issue 9, 2019

Effect of lithium ions on the catalytic efficiency of calcium oxide as a nanocatalyst for the transesterification of lard oil

Abstract

The present work encompasses the effect of Li+ ions on CaO nanoparticles for the transesterification of lard oil. The modification of CaO nanoparticles was achieved by the impregnation of different molar ratios of lithium hydroxide. Later, each catalyst was screened for the catalytic conversion of lard oil to a fatty acid methyl ester (FAME). The nanocatalyst CaO–0.5LiOH (1 : 0.5 molar ratio) showed the best conversion rate for FAME. The synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) analysis, and Hammett indicators for the basicity test. The obtained FAME was analyzed by gas chromatography with mass spectrometry (GC-MS) and 1H and 13C nuclear magnetic resonance (NMR). The effect of optimum reaction parameters such as catalyst weight percentage, oil-to-methanol ratio, reaction time, reaction temperature, and reusability of the catalyst for the transesterification reaction was analyzed by 1H NMR. The maximum FAME yield of 97.33% was obtained with 4 wt% catalyst amount and 1 : 6 oil-to-methanol ratio at 65 °C in 120 minutes. The physical properties of the synthesized FAME were also determined.

Graphical abstract: Effect of lithium ions on the catalytic efficiency of calcium oxide as a nanocatalyst for the transesterification of lard oil

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2019
Accepted
07 Jul 2019
First published
08 Jul 2019

Sustainable Energy Fuels, 2019,3, 2464-2474

Effect of lithium ions on the catalytic efficiency of calcium oxide as a nanocatalyst for the transesterification of lard oil

I. Ambat, V. Srivastava, E. Haapaniemi and M. Sillanpää, Sustainable Energy Fuels, 2019, 3, 2464 DOI: 10.1039/C9SE00210C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements