Issue 11, 2019

Local loop opening in untangled ring polymer melts: a detailed “Feynman test” of models for the large scale structure

Abstract

The conformational statistics of ring polymers in melts or dense solutions is strongly affected by their quenched microscopic topological state. The effect is particularly strong for untangled (i.e. non-concatenated and unknotted) rings, which are known to crumple and segregate. Here we study these systems using a computationally efficient multi-scale approach, where we combine massive simulations on the fiber level with the explicit construction of untangled ring melt configurations based on theoretical ideas for their large scale structure. We find (i) that topological constraints may be neglected on scales below the standard entanglement length, Le, (ii) that rings with a size 1 ≤ Lr/Le ≤ 30 exhibit nearly ideal lattice tree behavior characterized by primitive paths which are randomly branched on the entanglement scale, and (iii) that larger rings are compact with gyration radii 〈Rg2(Lr)〉 ∝ Lr2/3. The detailed comparison between equilibrated and constructed ensembles allows us to perform a “Feynman test” of our understanding of untangled rings: can we convert ideas for the large scale ring structure into algorithms for constructing (nearly) equilibrated ring melt samples? We show that most structural observables are quantitatively reproduced by two different construction schemes: hierarchical crumpling and ring melts derived from the analogy to interacting branched polymers. However, the latter fail the “Feynman test” with respect to the magnetic radius, Rm, which we have defined based on an analogy to magnetostatics. While Rm is expected to vanish for double-folded structures, the observed values of 〈Rm2(Lr)〉 ∝ 〈Rg2(Lr)〉 provide a simple and computationally convenient measure of the presence of a non-negligible amount of local loop opening in crumpled rings.

Graphical abstract: Local loop opening in untangled ring polymer melts: a detailed “Feynman test” of models for the large scale structure

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2018
Accepted
11 Feb 2019
First published
13 Feb 2019

Soft Matter, 2019,15, 2418-2429

Local loop opening in untangled ring polymer melts: a detailed “Feynman test” of models for the large scale structure

R. D. Schram, A. Rosa and R. Everaers, Soft Matter, 2019, 15, 2418 DOI: 10.1039/C8SM02587H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements