Issue 16, 2019

Flow-induced translocation of vesicles through a narrow pore

Abstract

We use finite element method to investigate the flow-induced translocation of vesicles through a narrow pore from a dynamic point of view. In order to complete the coupling between fluid flow and the vesicle membranes, we employ the fluid–structure interactions with the arbitrary Lagrangian–Eulerian method. Our results demonstrate that the vesicle shows similar shape change from bullet-like to dumbbell-like, dumbbell-like to bulb-like, and bulb-like to parachute-like if it is pushed by flow field to pass through a narrow pore smaller than its size. We further find that the strain energy exhibits a higher peak and a lower peak in the whole translocation process, where the higher peak corresponds to the dumbbell-like shape and the lower peak corresponds to the parachute-like shape due to more stretching of the membrane for the dumbbell-like shape than that of the parachute-like shape. The translocation time of the vesicle from one side to the other side of the narrow pore decreases with the increase of inlet velocity, but the strain energy exhibits an increase, which implies that the vesicle needs more time to complete the translocation with the lower inlet velocity, but the requirement for the mechanical properties of the membrane is lower. Our work answers the mapping between the positions of the vesicles and deformed states with the stress distribution and change of strain energy, which can provide helpful information on the utilization of vesicles in pharmaceutical, chemical, and physiological processes.

Graphical abstract: Flow-induced translocation of vesicles through a narrow pore

Article information

Article type
Paper
Submitted
17 Jan 2019
Accepted
06 Mar 2019
First published
06 Mar 2019

Soft Matter, 2019,15, 3307-3314

Flow-induced translocation of vesicles through a narrow pore

Y. Han, H. Lin, M. Ding, R. Li and T. Shi, Soft Matter, 2019, 15, 3307 DOI: 10.1039/C9SM00116F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements