Issue 26, 2019

Non-uniform curvature and anisotropic deformation control wrinkling patterns on tori

Abstract

We investigate wrinkling patterns in a tri-layer torus consisting of an expanding thin outer layer, an intermediate soft layer and an inner core with a tunable shear modulus, inspired by pattern formation in developmental biology, such as follicle pattern formation during the development of chicken embryos. We show from large-scale finite element simulations that hexagonal wrinkling patterns form for stiff cores whereas stripe wrinkling patterns develop for soft cores. Hexagons and stripes co-exist to form hybrid patterns for cores with intermediate stiffness. The governing mechanism for the pattern transition is that the stiffness of the inner core controls the degree to which the major radius of the torus expands – this has a greater effect on deformation in the long direction as compared to the short direction of the torus. This anisotropic deformation alters stress states in the outer layer which change from biaxial (preferred hexagons) to uniaxial (preferred stripes) compression as the core stiffness is reduced. As the outer layer continues to expand, stripe and hexagon patterns will evolve into zigzags and segmented labyrinths, respectively. Stripe wrinkles are observed to initiate at the inner surface of the torus while hexagon wrinkles start from the outer surface as a result of curvature-dependent stresses in the torus. We further discuss the effects of elasticities and geometries of the torus on the wrinkling patterns.

Graphical abstract: Non-uniform curvature and anisotropic deformation control wrinkling patterns on tori

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2019
Accepted
28 May 2019
First published
29 May 2019

Soft Matter, 2019,15, 5204-5210

Author version available

Non-uniform curvature and anisotropic deformation control wrinkling patterns on tori

X. Zhang, P. T. Mather, M. J. Bowick and T. Zhang, Soft Matter, 2019, 15, 5204 DOI: 10.1039/C9SM00235A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements