Issue 26, 2019

Illumination-induced motion of a Janus nanoparticle in binary solvents

Abstract

Using a fluid particle dynamics method we numerically investigate the motion of a spherical Janus particle suspended in a binary liquid mixture, which emerges under heating of one-half of a colloid surface. The method treats simultaneously the flow of the solvent and the motion of the particle, hence, the velocity of the particle can be computed directly. Our approach accounts for a phenomenon of critical adsorption, therefore, a particle that is adsorptionwise nonneutral is always completely covered by an adsorption layer (droplet). In order to establish the mechanism of self-propulsion, we study systematically various combinations of adsorption preference on both hemispheres of the Janus colloid as function of the heating power for symmetric and nonsymmetric binary solvents and for various particle sizes in three spatial dimensions. Only for a particle for which the heated hemisphere is neutral whereas the other hemisphere prefers one of the two components of the mixture does the reversal of the direction of motion occur. The particle self-propels much faster in nonsymmetric binary solvents. Self-propulsion originates from a gradient of mechanical stress, in a way similar to the Marangoni effect. This stress is not localized at the edge but distributed within the whole droplet. We compare our findings with the experimental observations and other theoretical results.

Graphical abstract: Illumination-induced motion of a Janus nanoparticle in binary solvents

Article information

Article type
Paper
Submitted
12 Mar 2019
Accepted
28 May 2019
First published
14 Jun 2019

Soft Matter, 2019,15, 5243-5254

Author version available

Illumination-induced motion of a Janus nanoparticle in binary solvents

T. Araki and A. Maciołek, Soft Matter, 2019, 15, 5243 DOI: 10.1039/C9SM00509A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements