Issue 39, 2019

Many-chain effects on the co-nonsolvency of polymer brushes in a good solvent mixture

Abstract

Polymer brushes normally swell in a good solvent and collapse in a poor solvent. An abnormal response of polymer brushes, so-called co-nonsolvency, is the phenomenon where the brush counter-intuitively collapses in a good solvent mixture. In this work, we employed molecular dynamics simulations to investigate the structural properties of the grafted polymers in the occurrence of co-nonsolvency. Brushes with various grafting densities were considered to study the effect of topologically excluded volumes on the co-nonsolvency. We found that the brush height follows a novel scaling behavior of the grafting density hσg0.71 in the co-nonsolvent mixture. Using the scaling exponent and Alexander-de Gennes theory, an analytic function that predicts the monomer density was obtained. The many-chain effects in the co-nonsolvent lead to the formation of both intermolecular and intramolecular bridging structures. Increasing the grafting density entails lower looping events occuring because of the intermolcular bridging, causing diverse structural properties. We report how the average thickness, the polymer orientation, and the looping probability vary as the grafting density increases. Based on these observations, we constructed a phase diagram of the polymer brush system using the average thickness and orientation as order parameters. Our simulations and analytical results reveal the nature of co-nonsolvency in polymer brushes in an explicit way and will help to provide practical guidelines for applications such as drug delivery and sensor devices.

Graphical abstract: Many-chain effects on the co-nonsolvency of polymer brushes in a good solvent mixture

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2019
Accepted
10 Sep 2019
First published
12 Sep 2019

Soft Matter, 2019,15, 7968-7980

Many-chain effects on the co-nonsolvency of polymer brushes in a good solvent mixture

G. Park and Y. Jung, Soft Matter, 2019, 15, 7968 DOI: 10.1039/C9SM01123D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements