Issue 40, 2019

Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving

Abstract

Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Characterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a challenge. Recently, new non-invasive approaches have been proposed to determine the non-equilibrium behavior, which are based on detecting broken detailed balance in the stochastic trajectories of several coordinates of the system. Inspired by the method of two-point microrheology, in which the equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium system, here, we investigate whether we can extend such an approach to non-equilibrium assemblies: can one extract information on the nature of the active driving in a system from the analysis of a two-point non-equilibrium measure? We address this question theoretically in the context of a class of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving. We consider several scenarios for the spatial features of the internal driving that may be relevant in biological and synthetic systems, and investigate how such features of the active noise may be reflected in the long-range scaling behavior of two-point non-equilibrium measures.

Graphical abstract: Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2019
Accepted
17 Sep 2019
First published
18 Sep 2019

Soft Matter, 2019,15, 8067-8076

Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving

F. Mura, G. Gradziuk and C. P. Broedersz, Soft Matter, 2019, 15, 8067 DOI: 10.1039/C9SM01169B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements