Photoinduced repetitive separation of a supramolecular assembly composed of an amphiphilic diarylethene mixture†
Abstract
A supramolecular assembly composed of a two-component mixture of amphiphilic diarylethenes, which have octyloxycarbonyl and N-octylcarbamoyl groups, showed a unique macroscopic transformation upon irradiation with UV light and subsequent standing in the dark. Unlike the pure compounds, the assembly was repetitively separated into a blue sphere and a red-purple sparse structure. Both the blue sphere and the sparse structure turned into colorless spheres upon irradiation with visible light and the divided colorless spheres showed the same response to UV and visible light. Phase diagrams based on the change in absorption spectra upon temperature change suggested that the transformation originates from a LCST transition. In the 0.5 : 0.5 mixture, in contrast to the pure compounds, the transition temperature sharply changed at around 50% of the fraction of the closed-ring isomer. TEM imaging showed that the 0.5 : 0.5 mixture with high photoisomerization yield formed a 10 nm-sized network. Judging from the phase diagram and TEM images, the separation is understood as the local phase transition of the regions with a high fraction of the closed-ring isomer.