Issue 47, 2019

Self-healing silk from the sea: role of helical hierarchical structure in Pinna nobilis byssus mechanics

Abstract

The byssus fibers of Mytilus mussel species have become an important role model in bioinspired materials research due to their impressive properties (e.g. high toughness, self-healing); however, Mytilids represent only a small subset of all byssus-producing bivalves. Recent studies have revealed that byssus from other species possess completely different protein composition and hierarchical structure. In this regard, Pinna nobilis byssus is especially interesting due to its very different morphology, function and its historical use for weaving lightweight golden fabrics, known as sea silk. P. nobilis byssus was recently discovered to be comprised of globular proteins organized into a helical protein superstructure. In this work, we investigate the relationships between this hierarchical structure and the mechanical properties of P. nobilis byssus threads, including energy dissipation and self-healing capacity. To achieve this, we performed in-depth mechanical characterization, as well as tensile testing coupled with in situ X-ray scattering. Our findings reveal that P. nobilis byssus, like Mytilus, possesses self-healing and energy damping behavior and that the initial elastic behavior of P. nobilis byssus is due to stretching and unraveling of the previously observed helical building blocks comprising the byssus. These findings have biological relevance for understanding the convergent evolution of mussel byssus for different species, and also for the field of bio-inspired materials.

Graphical abstract: Self-healing silk from the sea: role of helical hierarchical structure in Pinna nobilis byssus mechanics

Article information

Article type
Paper
Submitted
11 Sep 2019
Accepted
06 Nov 2019
First published
07 Nov 2019
This article is Open Access
Creative Commons BY license

Soft Matter, 2019,15, 9654-9664

Self-healing silk from the sea: role of helical hierarchical structure in Pinna nobilis byssus mechanics

D. Pasche, N. Horbelt, F. Marin, S. Motreuil, P. Fratzl and M. J. Harrington, Soft Matter, 2019, 15, 9654 DOI: 10.1039/C9SM01830A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements