Issue 15, 2019

Structural prediction and multilayer Li+ storage in two-dimensional VC2 carbide studied by first-principles calculations

Abstract

VC2, a new two-dimensional transition metal carbide containing C2 dimers, was predicted by the swarm-intelligent global-structure search method. The structural properties and Li+ storage ability of VC2 monolayers and stacked VC2 multilayers were systematically investigated by first-principles calculations, and the high structural stability and electronic conductivity of the materials suggested promising Li+ storage properties. VC2 monolayers showed a theoretical capacity of 1073 mA h g−1 based on multilayer Li+ adsorption, while stacked VC2 showed an even larger theoretical capacity of 1430 mA h g−1. Intercalated Li+ formed ordered arrangements between VC2 layers, retaining a well-ordered layered structure. Li+ near the VC2 layer formed ionic bonds with the host material, while Li in middle layers formed metallic Li–Li bonds. All Li+ was stored in the interlayer space with low diffusion barriers, which demonstrated high rate capability of the material for lithium ion batteries. Remarkably, the predicted VC2 carbide achieved more than 1000 mA h g−1 capacity irrespective of being in monolayer or stacked layer structures, which rendered them very convenient for practical material preparation and battery applications.

Graphical abstract: Structural prediction and multilayer Li+ storage in two-dimensional VC2 carbide studied by first-principles calculations

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2019
Accepted
09 Mar 2019
First published
11 Mar 2019

J. Mater. Chem. A, 2019,7, 8873-8881

Structural prediction and multilayer Li+ storage in two-dimensional VC2 carbide studied by first-principles calculations

J. Xu, D. Wang, R. Lian, X. Gao, Y. Liu, G. Yury, G. Chen and Y. Wei, J. Mater. Chem. A, 2019, 7, 8873 DOI: 10.1039/C9TA01476D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements