Issue 28, 2019

Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation

Abstract

To meet the demand for clean water, solar-driven water evaporation has recently drawn growing attention due to the high efficiency and environment-friendly procedure. For the transportation of water, these evaporation devices mostly possess porous structures. However, for long-term use in the natural environment, it is highly required to prevent biofouling induced channel plugging due to the universal existence of microbes in the natural water. Herein, we fabricated a double-layered GO–chitosan/ZnO scaffold (GCZ scaffold) as the solar steam device. The upper GO aerogel layer serves as a solar thermal converter, while the lower chitosan/ZnO composite layer serves as a unidirectional water pump. This GCZ scaffold exhibits a high water evaporation rate and good solar energy conversion efficiency under 10 sun and one sun irradiations, respectively. Moreover, the embedding of ZnO nanoparticles in the lower chitosan layer effectively controls the formation of biofilms in the unidirectional channels, resulting in an anti-biofouling solar-driven water evaporator. Compared to the ZnO-free scaffold suffering from the biofouling induced channel plugging, this anti-biofouling GCZ scaffold maintains a high solar-driven water evaporation rate and efficiency (89.4% for E. coli and 89.7% for S. aureus) even after cultivating in the bacterial suspensions for 3 days. This anti-biofouling solar-driven water evaporator evidently improves the lifetime of the material in natural water, conducive to further commercial applications.

Graphical abstract: Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2019
Accepted
07 May 2019
First published
08 May 2019

J. Mater. Chem. A, 2019,7, 16696-16703

Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation

X. Wang, J. Xue, C. Ma, T. He, H. Qian, B. Wang, J. Liu and Y. Lu, J. Mater. Chem. A, 2019, 7, 16696 DOI: 10.1039/C9TA02210D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements