Issue 23, 2019

Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics

Abstract

Self-healable soft conductors, which can withstand certain degrees of deformation and can recover from damage spontaneously, are essential for wearable applications. In this work, a soft hydrogel based self-healing triboelectric nanogenerator (HS-TENG), which is highly deformable, and both mechanically and electrically self-healable, has been successfully fabricated from a poly(vinyl alcohol)/agarose hydrogel. The incorporation of photothermally active polydopamine particles and multiwalled carbon nanotubes (MWCNTs) allows the HS-TENG to be physically self-healed in ∼1 min upon exposure to near-infrared (NIR) light. At the same time, the chemical self-healing of the HS-TENG can be triggered by water spraying at 25 °C when introducing water-active dynamic borate bonds into the hydrogel. The applicability of the HS-TENG as a soft energy device to harvest human motion energies has been demonstrated. By tapping the HS-TENG with various deformations, the rectified electricity can charge commercial LEDs with sustainable energy. Working in single-electrode mode, the electrical outputs of the HS-TENG in terms of short-circuit transferred charge (Qsc), open circuit voltage (Voc) and short-circuit current (Isc) reach ∼32 nC, ∼95 V and ∼1.5 μA, respectively, and remain stable even with 200% strain since the MWCNTs disperse evenly in the matrix and play the role of conductive fillers in the HS-TENG.

Graphical abstract: Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2019
Accepted
08 Apr 2019
First published
08 Apr 2019

J. Mater. Chem. A, 2019,7, 13948-13955

Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics

Q. Guan, G. Lin, Y. Gong, J. Wang, W. Tan, D. Bao, Y. Liu, Z. You, X. Sun, Z. Wen and Y. Pan, J. Mater. Chem. A, 2019, 7, 13948 DOI: 10.1039/C9TA02711D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements