Issue 37, 2019

Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction

Abstract

In recent years, boron (B) has been identified as a p-block catalyst for the nitrogen reduction reaction (NRR), but N2 adsorption on the B-site is often weak. In this report, iron has been introduced to improve N2 fixation. Four iron borides, including FeB, FeB2, FeB6(α), and FeB6(β), have been explored as potential NRR catalysts under the framework of density functional theory (DFT). The key hypothesis is that both Fe and B as active sites may have a synergetic effect on N2 fixation and reduction. As demonstrated by our calculations, FeB6(β) offers the best performance in terms of lowest maximum energy required for elementary steps (0.68 eV), which is close to that of recently reported single-atom catalysts. Following this computational work, lightly oxidized iron has been identified as the active site for the electrochemical synthesis of ammonia at room temperature.

Graphical abstract: Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2019
Accepted
29 Aug 2019
First published
30 Aug 2019

J. Mater. Chem. A, 2019,7, 21507-21513

Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction

Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang and C. Sun, J. Mater. Chem. A, 2019, 7, 21507 DOI: 10.1039/C9TA04650J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements