Issue 42, 2019

Reversible formation of networked porous Sb nanoparticles during cycling: Sb nanoparticles encapsulated in a nitrogen-doped carbon matrix with nanorod structures for high-performance Li-ion batteries

Abstract

Novel nanorods assembled from Sb nanoparticles encapsulated in a N-doped carbon matrix coated with a thin carbon layer (Sb@N-CM nanorods) were synthesized using a cation exchange reaction combined with a novel confined route. In situ transmission electron microscopy (TEM) observations verified that after delithiation, the Sb nanoparticles formed networked porous structures to enhance the utilization of active materials and close the connection between the Sb nanoparticles and N-doped carbon matrix for the first time; this can greatly improve the ion/electron transfer kinetics of a material. In addition, the Sb@N-CM nanorods not only improved the structural stability, stabilized the SEI layer and increased the transport of Li+, but also suppressed the SEI layer formation on the surface of individual Sb nanoparticles due to their advanced structural merits, such as coating with an N-doped conductive carbon layer and forming void spaces by a conductive carbon matrix, which can greatly increase the electrochemical performance. As a result, the Sb@N-CM nanorods exhibit a high reversible capacity (673.4 mA h g−1 at 100 mA g−1), ultrahigh cycling stability (99.7% capacity retention over 500 cycles), and excellent rate capability, which to our knowledge are the best cycling stability and capacity reported to date among all reported Sb-based materials.

Graphical abstract: Reversible formation of networked porous Sb nanoparticles during cycling: Sb nanoparticles encapsulated in a nitrogen-doped carbon matrix with nanorod structures for high-performance Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2019
Accepted
15 Sep 2019
First published
16 Sep 2019

J. Mater. Chem. A, 2019,7, 24292-24300

Reversible formation of networked porous Sb nanoparticles during cycling: Sb nanoparticles encapsulated in a nitrogen-doped carbon matrix with nanorod structures for high-performance Li-ion batteries

P. Feng, Z. Cui, S. He, Q. Liu, J. Zhu, C. Xu, R. Zou and J. Hu, J. Mater. Chem. A, 2019, 7, 24292 DOI: 10.1039/C9TA09093B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements