Issue 9, 2019

Ultrasensitive sandwich-type immunosensor for cardiac troponin I based on enhanced electrocatalytic reduction of H2O2 using β-cyclodextrins functionalized 3D porous graphene-supported Pd@Au nanocubes

Abstract

In this study, Pd@Au nanocubes supported β-cyclodextrins functionalized three-dimensional porous graphene (CDs-3D-PG-Pd@Au NCs) was synthesized using a facile method. β-cyclodextrins (CDs) were beneficial in improving the dispersibility of three-dimensional porous graphene (3D-PG) and displayed good capture capability towards secondary antibodies (Ab2). Moreover, large amounts of Pd@Au NCs could load on the CDs-3D-PG, which effectively improved the electrochemical signals. The obtained CDs-3D-PG-Pd@Au NCs composite was utilized as signal amplification labels. Furthermore, Au nanoparticles (AuNPs) and thionine (Th) decorated on amino-functionalized microporous carbon spheres (AuNPs-FMCS-Th) as sensor platforms, which not only effectively immobilized primary antibodies (Ab1) by interacting with Au–NH2, but also accelerated the electron transfer process on the electrode surface using the mediated effect of Th, resulted in further amplification of the signal response. The morphology and composition of the as-prepared nanomaterials were characterized using scanning electron microscopy (SEM), UV-vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometric it methods were used to investigate the electrocatalytic reduction of H2O2 by CDs-3D-PG-Pd@Au NCs using electron mediation of Th. Under optimal conditions, the proposed immunosensor exhibited high selectivity, acceptable stability and good reproducibility for the detection of cardiac troponin I (cTnI) with a low detection limit of 33.3 fg mL−1. Importantly, satisfactory results were obtained for analysing real serum samples, indicating that the designed method could provide an effective strategy in clinical research.

Graphical abstract: Ultrasensitive sandwich-type immunosensor for cardiac troponin I based on enhanced electrocatalytic reduction of H2O2 using β-cyclodextrins functionalized 3D porous graphene-supported Pd@Au nanocubes

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2018
Accepted
23 Jan 2019
First published
24 Jan 2019

J. Mater. Chem. B, 2019,7, 1460-1468

Ultrasensitive sandwich-type immunosensor for cardiac troponin I based on enhanced electrocatalytic reduction of H2O2 using β-cyclodextrins functionalized 3D porous graphene-supported Pd@Au nanocubes

X. Zhang, H. Lv, Y. Li, C. Zhang, P. Wang, Q. Liu, B. Ai, Z. Xu and Z. Zhao, J. Mater. Chem. B, 2019, 7, 1460 DOI: 10.1039/C8TB03362E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements