Issue 21, 2019

Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion

Abstract

Over the last few decades, there has been a tremendous increase in research on antibacterial surface coatings as an alternative strategy against bacterial infections. Although there are several examples of effective strategies to prevent bacterial adhesion, the effect of the wetting properties on the coating was rarely considered as a crucial factor. Here we report an in-depth study on the effect of extreme wettability on the antibacterial efficiency of a silver nanoparticles (AgNPs)-based coating. By controlling surface polymerization of mussel-inspired dendritic polyglycerol (MI-dPG) and post-functionalization, surfaces with wetting properties ranging from superhydrophilic to superhydrophobic were fabricated. Subsequently, AgNPs were embedded into the coatings by applying in situ reduction using the free catechols-moieties present in the MI-dPG coating. The resulting polymer coatings exhibited excellent antibacterial ability against planktonic Escherichia coli (E. coli) DH5α and Staphylococcus aureus (S. aureus) SH1000. The antibacterial efficiency of the coatings was analyzed by using inductively coupled plasma mass spectrometry (ICP-MS) and bacterial viability tests. Furthermore, the antifouling properties of the coatings in relation to the antibacterial properties were evaluated.

Graphical abstract: Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2019
Accepted
21 Apr 2019
First published
23 Apr 2019

J. Mater. Chem. B, 2019,7, 3438-3445

Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion

M. Li, C. Schlaich, M. Willem Kulka, I. S. Donskyi, T. Schwerdtle, W. E. S. Unger and R. Haag, J. Mater. Chem. B, 2019, 7, 3438 DOI: 10.1039/C9TB00534J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements