Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments†
Abstract
A bis-epoxide monomer was synthesised in two steps from (R)-carvone, a terpenoid renewable feedstock derived from spearmint oil, and used to prepare β-aminoalcohol oligomers in polyaddition reactions with bis-amines without requiring solvent or catalyst. A sub-set of the resultant materials were readily water soluble and were investigated for antifungal activity in combination with the fungicide iodopropynyl-butylcarbamate (IPBC) or the antifungal drug amphotericin B. The oligo-(β-aminoalcohol)s alone were inactive against Trichoderma virens and Candida albicans but in combination with IPBC and amphotericin B demonstrated synergistic growth-inhibition of both fungi. Quantitative analysis showed that the presence of the terpene-based oligomers decreased the minimum inhibitory concentration (MIC) of IPBC by up to 64-fold and of amphotericin B by 8-fold. The efficacy of the combined formulation was further demonstrated with agar disk diffusion assays, which revealed that IPBC and amphotericin B reduced the growth of the fungi, as shown by zones of inhibition, to a greater extent when in the presence of the oligo-(β-aminoalcohol)s. These data suggest potential future use of these renewable feedstock derived oligomers in antifungal material and related biomedical applications.