Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells†
Abstract
We designed and synthesized three PDI derivatives (PDI-II, PDI-III and PDI-IV). All these acceptor molecules have a central benzene core and the PDI units are linked to the central benzene core by an acetylene spacer. PDI-II is a linear molecule, which bears two flanked PDI units, PDI-III is a c3-symmetrical star-shaped molecule with three peripheral PDI units, and PDI-IV is a star-shaped molecule with four PDI units linked to the 1,2,4,5-positions of the central benzene core. These absorption features indicated that the PDI units in PDI-II and PDI-III are planar, whereas the PDI units in PDI-IV are twisted due to the steric crowding. Compared with the linear PDI-II, the star-shape could effectively prevent PDI-III and PDI-IV from forming large aggregates when blended with the donor polymer PBDB-T. PBDB-T:PDI-II, PBDB-T:PDI-III and PBDB-T:PDI-IV based OSCs gave power conversion efficiencies (PCEs) of 3.05%, 6.00% and 1.04%, respectively. The big differences in electron mobility and PCE for PDI-III and PDI-IV are probably due to the fact that the PDI units in PDI-III are planar and those in PDI-IV are twisted.