Issue 37, 2019

Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence

Abstract

Dry mechanochemical ball-milling of halide precursor salts is a promising route for the synthesis of high-purity halide perovskites in a fast and solvent-free manner. However, there is a lack of information on the process mechanisms, kinetics, and possible side-effects. Here, we investigated in detail the mechanochemical synthesis of fully-inorganic CsPbBr3 by ball-milling of stoichiometric CsBr and PbBr2. Detailed structural, morphological and optical analyses reveal several beneficial and detrimental effects of milling as a function of time. Three stages are identified during the process: (i) at short milling times (t < 5 min) different ternary compounds are formed, including stoichiometric CsPbBr3 as well as Cs4PbBr6, and to a lesser extent, CsPb2Br5. Photoluminescence from “nano” and “bulk” CsPbBr3 species is observed, centered at 525 nm and 545 nm, respectively. (ii) At the optimum time (around 5 min for the present case) the complete transformation of all reactants and byproducts into phase-pure CsPbBr3 has occurred. Photoluminescence corresponds to bulk CsPbBr3; (iii) at much longer milling times (up to 10 hours) eventually smaller quantum-confined CsPbBr3 NCs are exfoliated from the bulk product leading to a broad and blue-shifted emission. At this stage the photoluminescence intensity is strongly reduced which is ascribed to the formation of surface defects induced by ball-milling in dry conditions.

Graphical abstract: Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence

Supplementary files

Article information

Article type
Communication
Submitted
12 Jul 2019
Accepted
04 Aug 2019
First published
15 Aug 2019

J. Mater. Chem. C, 2019,7, 11406-11410

Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence

F. Palazon, Y. El Ajjouri, P. Sebastia-Luna, S. Lauciello, L. Manna and H. J. Bolink, J. Mater. Chem. C, 2019, 7, 11406 DOI: 10.1039/C9TC03778K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements