Issue 42, 2019

Ferromagnetic Ising chains in frustrated LnODCO3: the influence of magnetic structure in magnetocaloric frameworks

Abstract

Probing the magnetic interactions in functional magnetic materials can reveal detailed insight into how to optimise the properties they possess while providing key understanding of the exotic phenomena they may host. This study probes the short and long range magnetic order in the LnODCO3 (where Ln = Tb, Dy, Ho, and Er) framework magnetocalorics using variable-temperature neutron scattering measurements. Reverse Monte Carlo analysis of neutron scattering data shows that TbODCO3, DyODCO3 and HoODCO3 develop short range Ising-like magnetic order between 1.5 and 20 K, consistent with dominant ferromagnetic correlations within chains along the b-axis. Through magnetic susceptibility measurements we identify that long range magnetic order develops in TbODCO3 and HoODCO3 at ∼1.2 and ∼0.9 K, respectively. Neutron diffraction measurements were conducted on HoODCO3 revealing incommensurate magnetic order develops between 1.2 and 0.9 K, before a commensurate magnetic phases emerges at 0.8 K with long-range ferromagnetic order in the chains. The results suggest Ising-like ferromagnetic chains associated with frustration are responsible for the improved magnetocaloric properties, of some members in this family, at higher temperatures and low applied fields.

Graphical abstract: Ferromagnetic Ising chains in frustrated LnODCO3: the influence of magnetic structure in magnetocaloric frameworks

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2019
Accepted
27 Sep 2019
First published
08 Oct 2019
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2019,7, 13111-13119

Ferromagnetic Ising chains in frustrated LnODCO3: the influence of magnetic structure in magnetocaloric frameworks

R. J. C. Dixey, G. B. G. Stenning, P. Manuel, F. Orlandi and P. J. Saines, J. Mater. Chem. C, 2019, 7, 13111 DOI: 10.1039/C9TC04980K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements