Issue 1, 2020

A simulation study of the influence of the traveling wave patterns on ion mobility separations in structures for lossless ion manipulations

Abstract

Probing molecular properties in the gas phase requires the integration of complementary ion manipulation approaches such as ion mobility spectrometry. Structures for lossless ion manipulations (SLIM) have recently been developed to perform ultra-high resolution ion mobility separations using traveling waves as well as providing other advanced capabilities. Despite its success, the design aspects of SLIM have not been fully explored and remained largely unchanged. Here, we report on a computational study using SIMION simulations of a number of traveling wave (TW) patterns that can be used in SLIM. The TW pattern used in the current SLIM device is a set of 8 electrodes where, at any time, 4 electrodes are held at high voltage (i.e., 1111), while the other 4 electrodes are held at low voltage (i.e., 0000), forming one micro-trapping region of 11110000 pattern. Ion trajectory simulations demonstrated the feasibility to simplify the 8-electrode set to a shorter pattern (e.g., 6-electrode or 4-electrode set) while maintaining or improving the performance. The RF and TW amplitudes, guard voltage, and TW speed were optimized subsequently on the symmetric patterns of the 4-, 6-, and 8-electrode sets to further improve the performance. The resolution, peak broadening, peak capacity, and peak generation rate of each pattern were evaluated, showing that the 111000 pattern of the 6-electrode set has comparable performance to the current 11110000 pattern and is always better than the 1100 pattern. This work provides insight into the feasibility for simplification and modification of the TW configuration in SLIM and other traveling wave devices.

Graphical abstract: A simulation study of the influence of the traveling wave patterns on ion mobility separations in structures for lossless ion manipulations

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2019
Accepted
22 Oct 2019
First published
30 Oct 2019

Analyst, 2020,145, 240-248

A simulation study of the influence of the traveling wave patterns on ion mobility separations in structures for lossless ion manipulations

A. Li, S. V. B. Garimella and Y. M. Ibrahim, Analyst, 2020, 145, 240 DOI: 10.1039/C9AN01509D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements