Issue 1, 2020

Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection

Abstract

Detecting atmospheric bioaerosols in a quantitative way is highly desirable for public health and safety. This work demonstrates that surface-enhanced Raman spectroscopy (SERS) is a simple and rapid analytical technique for the detection of atmospheric bioaerosols, on a Klarite substrate. For both simulated and ambient bioaerosols, this detection assay results in an increase in the enhancement factor of the Raman signal. We report a strong SERS signal generated by bioaerosols containing living Escherichia coli deposited on Klarite. Furthermore, we demonstrate that SERS mapping can be used to estimate the percentage of airborne, living Escherichia coli. Moreover, Klarite provides differently distinct SERS spectra at different bacterial growth phases, indicating its potential to identify changes occurring in the bacterial envelope. Finally, we applied SERS for the rapid detection of Escherichia coli in ambient bioaerosols without using time-consuming and laborious culture processes. Our results represent rapid, culture-free and label-free detection of airborne bacteria in the real-world environment.

Graphical abstract: Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2019
Accepted
06 Nov 2019
First published
12 Nov 2019

Analyst, 2020,145, 277-285

Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection

M. A. Tahir, X. Zhang, H. Cheng, D. Xu, Y. Feng, G. Sui, H. Fu, V. K. Valev, L. Zhang and J. Chen, Analyst, 2020, 145, 277 DOI: 10.1039/C9AN01715A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements